Individual blade pitch for yaw control

نویسندگان

  • S T Navalkar
  • J W van Wingerden
  • M van Kuik
چکیده

Individual pitch control (IPC) for reducing blade loads has been investigated and proven successful in recent literature. For IPC, the multi-blade co-ordinate (MBC) transformation is used to process the blade load signals from the rotating to a stationary frame of reference. In the stationary frame of reference, the yaw error of a turbine can be appended to generate IPC actions that are able to achieve turbine yaw control for a turbine in free yaw. In this paper, IPC for yaw control is tested on a high-fidelity numerical model of a commercially produced wind turbine in free yaw. The tests show that yaw control using IPC has the distinct advantage that the yaw system loads and support structure loading are substantially reduced. However, IPC for yaw control also shows a reduction in IPC blade load reduction potential and causes a slight increase in pitch activity. Thus, the key contribution of this paper is the concept demonstration of IPC for yaw control. Further, using IPC for yaw as a tuning parameter, it is shown how the best trade-off between blade loading, pitch activity and support structure loading can be achieved for wind turbine design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

10 Lidars and wind turbine control – Part 2

Modern utility-scale wind turbines are typically controlled using yaw, generator torque, and blade pitch actuation (Pao and Johnson, 2011). The yaw motor is used to align the rotor with the wind direction for the purpose of maximizing power capture. Generator torque is controlled during below-rated (region 2) operation to maximize power capture by maintaining the optimal tip speed ratio. In abo...

متن کامل

Performance of Disturbance Augmented Control Design in Turbulent Wind Conditions

This paper investigates the use of disturbance models in the design of wind turbine individual pitch controllers. Previous work has used individual pitch control and disturbance models with the Multiblade Coordinate Transformation to design controllers that reduce the blade loads at the frequencies associated with the rotor speed. This paper takes a similar approach of using a disturbance model...

متن کامل

Mitigation of Fatigue Loads Using Individual Pitch Control of Wind Turbines Based on FAST

With the increase of wind turbine dimension and capacity, the wind turbine structures are subjected to prominent loads and fatigue which would reduce the lifetime of wind turbines. Individual pitch control (IPC) is used in this paper to attenuate the blade root bending moment and the tilt and yaw moments and fatigue. The loading transfer from rotational coordinate system to the fixed coordinate...

متن کامل

Individual Blade Pitch and Camber Control for Vertical Axis Wind Turbines

In this paper we present a dynamical systems model and control algorithms for a small, vertical axis wind turbine (VAWT). The wind turbine is designed for the domestic market, including regions without very favorable wind conditions. Good performance at low wind speeds is an important requirement for developing an economically viable, suburban VAWT. The performance of a VAWT can be greatly enha...

متن کامل

Experimental wind tunnel testing of linear individual pitch control for two-bladed wind turbines

In this paper Linear Individual Pitch Control (LIPC) is applied to an experimental small-scale two-bladed wind turbine. LIPC is a recently introduced Individual Pitch Control (IPC) strategy specifically intended for two-bladed wind turbines. The LIPC approach is based on a linear coordinate transformation, with the special property that only two control loops are required to potentially reduce ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014